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bstract

Nonlinearity and the time-varying dynamics of fuel cell systems make it complex to design a controller for improving output performance. This
aper introduces an application of a model reference adaptive control to a low-power proton exchange membrane (PEM) fuel cell system, which
onsists of three main components: a fuel cell stack, an air pump to supply air, and a solenoid valve to adjust hydrogen flow. From the system
erspective, the dynamic model of the PEM fuel cell stack can be expressed as a multivariable configuration of two inputs, hydrogen and air-flow
ates, and two outputs, cell voltage and current. The corresponding transfer functions can be identified off-line to describe the linearized dynamics
ith a finite order at a certain operating point, and are written in a discrete-time auto-regressive moving-average model for on-line estimation of

arameters. This provides a strategy of regulating the voltage and current of the fuel cell by adaptively adjusting the flow rates of air and hydrogen.
xperiments show that the proposed adaptive controller is robust to the variation of fuel cell system dynamics and power request. Additionally, it
elps decrease fuel consumption and relieves the DC/DC converter in regulating the fluctuating cell voltage.

2008 Elsevier B.V. All rights reserved.
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. Introduction

Proton exchange membrane fuel cells, also known as poly-
er electrolyte membrane fuel cells, have the advantages of

igh power and energy density, low operation temperature, fast
tart-up, and higher efficiency, but still face many challenging
echnical hurdles, such as cost, size, weight, durability, reliabil-
ty, and air, thermal, and water management [1–3]. In addition,
uel cells are subjected to various situations of time-varying load,
uring which the air-flow, gas pressure, temperature, humid-
ty, and membrane hydration must be controlled over a wide
ange of operation. Typical fuel cell system operation requires
rompt measurement of system states by a set of sensors, such
s flow meters, thermocouples, pressure transducers, voltmeter,

all sensor, hydrogen detector, etc. These signals are typically
ed back to a microprocessor that calculates proper control
ctions based on a specific control strategy that is executed by

∗ Corresponding author. Tel.: +886 2 33662682; fax: +886 2 23631755.
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arious actuators, such as an air pump, a humidifier, solenoid
alves, fan motors and safety devices.

The complex, nonlinear dynamics of fuel cell systems are
sually approximately described by the principles of electro-
hemistry, fluid dynamics, and heat transfer in terms of physical
arameters, material properties, and universal constants under
arious assumptions and constraints. The dynamic response of
ell voltage and current involve reactant pressure and flow rate,
ocal species concentration, and load electrical demands, which
an vary rapidly enough that many assume these are instanta-
eous. On the other hand, fuel cell temperature and its regulation,
umidity, cell hydration, as well as overall heat management pro-
esses are characterized by relatively slow dynamic response, as
nalyzed by Mueller et al. [4]. Many researchers have devoted
hemselves to developing and using steady-state models of PEM
uel cells, describing the relationships amongst physical vari-
bles through the Nernst equation, gas diffusion equation, and

pecies concentration and polarization equations. Most recently,
n increasing number of researchers have focused on dynamic
odels to describe the transient response of PEM fuel cell sys-

ems. Pukrushpan et al. [5] modeled transient dynamics with

mailto:ypyang@ntu.edu.tw
dx.doi.org/10.1016/j.jpowsour.2008.01.053
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and ribs in an active area of 40 mm × 130 mm.

The rated and peak power outputs of the fuel cell are 117 W
at 9 V and 124 W at 7.9 V, respectively. The maximum fuel-
to-electricity efficiency that the fuel cell can achieve is about
Y.-P. Yang et al. / Journal of P

set of first-order differential equations governing the air com-
ressor, mass transportation, energy conservation of the reactant
ows, and pressures in the cathode and anode. Ceraolo et al. [6]
rovided more precise partial differential equations to describe
oth static and dynamic behaviors of the PEM fuel cell, including
as diffusion, proton concentration, and mass transportation. In
heir spatial, time-dependent fuel cell model, Golbert and Lewin
7] included the dynamics of water condensation, evaporation,
nd generation, as well as quasi-steady-state temperature profile.
athapati et al. [8] derived a dynamic model with the effects of
harge double-layer capacitance, dynamics of flow and pressure,
nd mass/heat transient features of fuel cells, which predicted the
ransient response of cell voltage, temperature, gas flow rates,
nd pressure under a sudden change in load current. A highly
ynamic PEM fuel cell stack model was proposed by Shan and
hoe [9], which took into account the most influential property
f temperature on the output performance and dynamics.

Although some researchers have proposed an effective model
or system and control development [4,10], the nonlinearity
nd time-varying characteristics still pose difficult problems
or system identification and control. Simplified models, either
inear or nonlinear, with nominal parameters are usually valid
ithin a linear range of operation. Such models are usually used

o investigate stability, sensitivity, observability, and control-
ability, before designing a controller. More practically, these
arameters that vary with time and operating states are identi-
ed in real time to match system response with minimal errors.
herefore, adaptive control can serve as a feedback law to
chieve control objectives subject to the variation of system
arameters as well as external disturbances. Pukrushpan et al.
5] designed an observer-based feedback controller to protect
he fuel cell stack from oxygen starvation during the change of
urrent command, using the linear quadratic technique based on
he linearized state-space model. Paradkar et al. [11] integrated a
inearized PEM fuel cell model into a power plant, and simulated
load frequency control problem by an optimal controller based
n the disturbance accommodation control theory. Schumacher
t al. [12] employed a fuzzy controller to manage humidity by
djusting the fan voltage for supplying air to a miniature PEM.
urado and Saenz [13] noted that their proposed adaptive control
trategy was able to stabilize a hybrid fuel cell and turbine system
ubject to system parameter variations and external disturbances.
ekin et al. [14] provided a fuzzy proportional-derivative (PD)
ontroller plus integral (I) controller to adjust the air-flow rate
f a 5 KW PEM fuel cell. It was found that the ratio between
he consumed energy by the motor-compressor group and the
nergy delivered by the fuel cell was greatly reduced. Woo and
enziger [15] applied a PID controller to regulate the output cur-

ent of a single-cell PEM fuel cell by controlling the flow rate
f hydrogen, while the full utilization of hydrogen was achieved
ith 30% stoichiometric excess on the oxygen.
Recently, Meyer and Revankar [16] surveyed the control-

riented models and control strategies of PEM fuel cell systems.

he researchers indicated that future attempts to develop nonlin-
ar multi-input multi-output systems must be important over the
ntire operating range in order to seek reduced reactant usage
nder various power demands. Methekar et al. [17] proposed
Sources 179 (2008) 618–630 619

linear multivariable model for controlling the average power
ensity and solid temperature of a PEM fuel cell to avoid oxygen
tarvation. The selected input variables were the inlet molar flow
ate of hydrogen, the inlet molar flow rate of oxygen, the inlet
ow rate of coolant, and the inlet gas temperatures of anodes and
athodes. These researchers simulated the order reduction from
distributed parameter model to a set of first- or second-order

ransfer functions, by which the PI-controller-based power and
olid temperature control loops were constructed.

The authors have also presented a preliminary study of system
dentification, and robust and adaptive controls of a low-power
EM fuel cell [18,19]. This paper extends the previous single-

nput single-output (SISO) adaptive control to a multivariable
onfiguration of indirect model reference adaptive control. Both
he air and hydrogen flow rates are used to regulate cell voltage
nd current according to the updated information of the external
oad and system dynamics.

. Material and methods

.1. Fuel cell specifications

The fuel cell stack in use consists of 15 cells with an active
rea of about 50 cm2, as shown in Fig. 1. The cells are connected
ith a pre-treated membrane (Nafion® 112) by hot press for opti-
um conditions, and are electrically connected in series with

atalyst layers where the platinum coating is about 0.2 mg cm−2

t the anode and 0.4 mg cm−2 at the cathode. The gas separa-
or plates are made of the graphite material (TOYO TANSO,
apan) treated to become gas impermeable; each is as large
s 160 L mm × 50 W mm × 2 T mm with two fins on each side,
nd each fin has a size of 160 L mm × 15 W mm × 1 T mm. This
esign is so similar to the cooling fins of internal combustion
ngine that it increases the cooling surface and improves the
ooling efficiency. In addition, the hydrogen flow field consists
f a serpentine pattern of parallel double-channels, and the air-
ow field consists of a straight pattern of parallel multi-channels
Fig. 1. 100 W fuel cell stack.
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Fig. 2. PEM fuel

7% on a lower heating value (LHV) under the dry H2/air and
umidification-free conditions. The fuel cell system was a pro-
otype from Delta Electronics. The whole system includes an
ndividual temperature control loop, water management loop,
nd flow control loop. This paper intends to replace the flow
ontrol loop using adaptive control while keeping the others
nchanged. The flow rate of natural air is adjusted by an air
ump, while the flow rate of hydrogen is regulated by a solenoid
alve.

.2. Fuel cell system model

In order to develop the control strategy of the low-power fuel
ell, the dynamic models from the previous studies are integrated
o describe the mass and heat transfer in flow channels, Nernst
quation, cathode gas diffusion, cathode kinetics, and proton
oncentration dynamics [6,20–23]. From modern control theo-
ies [24], the control-oriented fuel cell system block diagram can
e approximated as a two-input two-output system, as shown in
ig. 2. Equipped with additional balance-of-plant (BOP) com-
onents, such as an air pump and hydrogen valve, the fuel cell

ystem can be simply reduced to a standard block diagram, as
hown in Fig. 3.

From the system viewpoint, the hydrogen at a certain pressure
s fed by a solenoid valve whose dynamics are denoted by the

Fig. 3. Approximate fuel cell system block diagram.
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ystem dynamics.

lock GS that describes the relationship between the hydrogen
ow rate NH and valve voltage VS. On the other hand, air at the
tandard atmosphere of 1 bar is often transported by an air pump
o provide oxygen to the cathode, whose dynamics are denoted
y the block Ga that describes the relationship between the air-
ow rate NA and air pump voltage VA. The coupled blocks Gi,
= 1, 2, 3, 4, describe the relationships between the cell current
c and cell voltage Vc, and the air-flow rate NA and hydrogen
ow rate NH, where R denotes the internal resistance of the fuel
ell. It is noticed that the temperature and humidity of air and
ydrogen are not managed in this research, but are regarded as
wo dependent states of the fuel cell. Assuming that the fuel cell
s operated at a certain operating point, the six blocks can be
inearized as transfer functions of finite orders and time-varying
oefficients. These coefficients are implicit functions of state
ariables, such as temperature, membrane hydration, reactant
ressure, gas concentration, etc., which directly affect cell volt-
ge, current density, and the overall performance of the fuel cell.
hen the air pump voltage and the hydrogen valve voltage are

egarded as input variables, and the cell voltage Vc and current
c are chosen as system outputs, the fuel cell system model can
e expressed as

c = Ga2VA + GS4VS − RIc, (1)

c = Ga1VA + GS3VS, (2)

here Ga1 = GaG1, Ga2 = GaG2, GS3 = GSG3, GS4 = GSG4.
ince Vc and Ic are dependent, (1) can be reduced to

c = (Ga2 − RGa1)VA + (GS4 − RGa1)VS. (3)

It is noticed that the cell voltage and cell current, since depen-
ent, are not to be regulated concurrently with arbitrary set

oints. Either configuration (2) or (3), namely a multi-input
ingle-output model, is employed as the basis of system iden-
ification, as well as an adjustable model for designing the fuel
ell controller.
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Table 1
Operating conditions for system identification

Temperature (◦C) 17
Pressure (atm) 1
Humidity (%) 74
Fuel cell temperature (◦C) 35–40
Air pump voltage (V) 5 ± 2
Anode reactant H2, 1.2 LPM, 7 psig
Cathode reactant Natural air
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To facilitate the following adaptive controller design, a set
of second-order continuous-time transfer functions and their
discrete-time approximations of 0.01 s sampling time at a certain
operating point are illustrated in Table 2.

Table 2
Illustration of identified second-order transfer function pairs in s and z domains

Ga1 = Ic/VA, Vc = 8 V Ga2 = Vc/VA, Ic = 3 A

0.9909s + 15.89

s2 + 6.401s + 9.732

0.3269s + 2.016

s2 + 3.921s + 2.058

0.01037z − 0.008835

z2 − 1.937z + 0.938

0.003305z − 0.003107

z2 − 1.961z + 0.9616

GS3 = Ic/VS, Vc = 8 V GS4 = Vc/VS, Ic = 3 A

0.2477s + 3.973 0.08173s + 0.5041
urrent density (A cm ) 0.2
ampling frequency (Hz) 100

.3. Off-line system identification

The purpose of off-line system identification is to obtain the
ransfer functions between system inputs and outputs in (1) and
2) at certain operating points. The information provided from
ransfer functions, such as system order, parameters, and time
elay, must be used for the adaptive controller design. Although
any approaches are available, non-parametric system identifi-

ation is one of the most effective to investigate the frequency
esponse of the fuel cell stack.

The identification of the transfer function Ga1 = Ic/VA is
emonstrated between the cell current and air pump voltage
nder certain operating conditions, as described in Table 1. The
ydrogen is supplied with a nominal rate of 1.2 LPM at 7 psig by
solenoid valve, which is always on during the process, but the
utput valve opens to purge chemical product for 2 s every 2 min.
ven though the purge valve is closed, the hydrogen is contin-
ally supplied and consumed to convert to electricity, while the
ater purging can be regarded as the external disturbance that
elps excite system dynamics during identification. On the other
and, this disturbance can be easily controlled by the proposed
daptive controller.

The cell voltage is set fixed by an electronic load meter at
.5 V for three or more identifications. The input voltage of the
ir pump is a sinusoidal function VA = 5 + 2 cos(ωt), whose fre-
uency sweeps from 0.05 to 10 Hz. Then, the dynamic signal
nalyzer (DSA) HP35670A takes N samples of cell current Ic
nd calculates the magnitude and phase of frequency response
a1(jω) as follows.

Ĝa1(jω)| =
√

f 2
s + f 2

c , (4)

ˆ N(jω) = arg Ĝa1(jω) = − arctan

(
fs

fc

)
, (5)

here

s = 1

N

N∑
t=1

Ic(t) sin(ωt) and fc = 1

N

N∑
t=1

Ic(t) cos(ωt). (6)

The corresponding frequency responses of G are shown in
a1
ig. 4, where three test results do not have significant differences
ver the frequency range, and the resulting estimation of transfer
unction is then expressed in different orders as
ig. 4. Identified frequency responses of Ga1 at a load of 8.5 V for three tests.

First-order approximation:

Ga1(s) = Ic(s)

VA(s)
= 0.01444s + 0.08766

s + 0.229
. (7)

Second order approximation:

Ga1(s) = 0.0004543s2 + 0.1307s + 0.05606

s2 + 1.011s + 0.1392
. (8)

Third order approximation:

Ga1(s) = 0.002546s3 + 0.1356s2 + 0.06633s + 0.02382

s3 + 1.058s2 + 0.4321s + 0.06131
.

(9)

Similar results can be also obtained for the transfer func-
ions Ga2, GS3, and GS4, and bring the conclusion that a
econd-order transfer function may be sufficient to describe
he dominant dynamics of a PEM fuel cell stack [18,19].
s2 + 6.401s + 9.732 s2 + 3.921s + 2.058

0.002594z − 0.002209

z2 − 1.937z + 0.938

0.0008263z − 0.0007769

z2 − 1.961z + 0.9616
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This adaptive control scenario is illustrated in Fig. 5.

From the previous result of system identification, the approx-
imated blocks of the fuel cell system of interest can be well
described as second-order subsystems. Without loss of gener-
22 Y.-P. Yang et al. / Journal of P

. Theory and calculation

.1. On-line parameter estimation and adaptive control

PEM fuel cells have a number of attributes to make them
romising candidates for use in domestic appliances and trans-
ortation applications [25]. The power demand of automobiles
epends on the driving conditions, and the provision of elec-
ricity from a fuel cell varies due to its system states, such as
eactant flow rates, cell temperature, humidity, and pressure. The
elationship between fuel cell output voltage and current is usu-
lly described by polarization curves, which also vary with cell
emperature, pressure, humidity, and some other states. These
ime-varying and state-dependent properties are hardly depicted
y simple mathematical models, but the system identification
roves that it is possible to approximate fuel cell dynamics by
ransfer functions at a certain operating point. These transfer
unctions can be transformed to discrete-time parameter estima-
ion models in the adaptive control loop of a fuel cell system
ubject to external disturbances as well as system parameter
hanges.

In practice, the fuel cell current can be regarded as an external
isturbance to the system, which is requested by the demand
or power by external loads. Therefore, the approximated block
iagram of a fuel cell in Fig. 3 can further simplified as a two-
nput and one-output structure.

.2. ARMA model and on-line parameter estimation

As mentioned above, cell voltage and cell current are depen-
ent, and thus are not to be regulated concurrently with arbitrary
et points. Either (2) or (3) is used for on-line parameter esti-
ation, and is usually represented as a discrete-time equation

f difference operator, leading to the following auto-regressive
oving-average (ARMA) model [26]:

(q, k)y(k) = B(q, k)u(k) + w(k), (10)

(q, k) = a0(k) + a1(k)q−1 + · · · + ar(k)q−r, (11)

(q, k) = B1(k)q−1 + B2(k)q−2 + · · · + Br(k)q−r, (12)

here y = Ic or Vc denotes the output variable, u = [u1 u2]T = [VA

S]T represents the 2-tuple input vector, w is composed of
igher-order dynamics and disturbances, and is known as an
stimation error vector. The coefficients ai’s are scalars while
i’s are 2-tuple row vectors for i = 1, 2, . . ., r, the integer k
enotes the time instant of sampling, and r is the system order.
ithout loss of generality, a0 = 1. In a succinct form, the term

(q,k)y(k) is the auto-regression part, where q−1 is a backward
hift operator, and q−hy(k) represents the past output y(k − h);
= 1, 2, . . . r; B(q,k)u(k) denotes the moving average of past

nputs, where q−hu(k) = u(k − h).

The approach of the recursive least square algorithm for sys-

em identification is to predict the system output according to
he past information of input and output measurements, as well
s the updated set of system parameters. From (10) to (12), the
Sources 179 (2008) 618–630

stimation of y(k) is expressed as

ˆ(k) = φT(k − 1) θ̂(k − 1), (13)

here φT(k − 1) = [−y(k − 1) . . . −y(k − r) u1(k − 1) . . .

1(k − r) u2(k − 1) . . . u2(k − r)] and θ̂(k − 1) is the estimated
arameter vector of â′

is and B̂′
is. The estimation error w(k) is

efined as y(k) − ŷ(k).
At step k, when the new output is measured, the updated set

f parameters are calculated by [26]

ˆ(k) = θ̂(k − 1) + K(k)[y(k) − φT(k − 1)θ̂(k − 1)], (14)

(k) = P(k − 1)φ(k − 1)[λ + φT(k − 1)P(k − 1)φ(k − 1)]
−1

,

(15)

(k) = [I − K(k) φT(k − 1)] P(k − 1)

λ
, (16)

here the estimation gain K(k) brings the relative information
f new measurements to update the parameter estimation, and
he covariance matrix P(k) characterizes the difference between
he estimated parameters and their true values. Initially, P(0)
s chosen as a large positive number, for example 103I, where
is an identity matrix, to render the inaccurate initial guess

ˆ(0) quickly negligible. The coefficient 0 < λ < 1 is called the
orgetting factor, which places more importance on the new
nformation for updating system parameters, and less attention
n the past information.

.3. Model reference adaptive control (MRAC)

Model reference adaptive control is one of the promising
trategies for a complex fuel cell system. No matter how com-
licated the system is, its desired output can be designated to
ollow the output of a reference model with specified dynam-
cs. The model reference adaptive control strategy includes the
pecification of a reference model with the desired dynamics,
n-line parameter estimation, and calculation of control gains.
Fig. 5. Model reference adaptive control scenario of fuel cell.
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lity, the following control law is derived for an SISO system
hose model is identified on-line and is denoted by

ˆ (q)y(k) = B̂(q)u(k), (17)

here Â(q) = q2 + â1q + â2, and B̂(q) = b̂1q + b̂2. For a stan-
ard feedback control law

(q)u(k) = T (q)uc(k) + S(q)y(k), (18)

here uc is a reference signal. The closed-loop relationship
etween uc(k) and y(k) can be written as

(k) = B̂T

ÂR + B̂S
uc(k), (19)

n which the index q is omitted for simplicity. The desired closed-
oop model is chosen as

mym(k) = Bmuc(k), (20)

here Am(q) = q2 + am1 q + am2 and Bm(q) = bm1 q + bm2, then a
erfect model-following condition becomes

B̂T

ÂR + B̂S
= Bm

Am
. (21)

Under the conditions of compatibility and causality, the
ontrol polynomials T and S are obtained by the Bezout or
iophantine equation:

ˆ R + B̂S = AmAo, (22)

here R(q) = q + r1, S(q) = s0q + s1, and Ao(q) = q + ao is known
s an observer polynomial, which is always cancelled in the
ransfer function between the output and reference signal. When
he unit steady-state gain of Bm/Am is designed and Bm = βB̂ is
elected, the control polynomial T becomes simply βAo. In sum-
ary, the parameters of those control polynomials are calculated

fter system parameters â1, â2, b̂1, and b̂2 are estimated:

1=aoam2b̂
2
1 + (â2 − am2 − aoam1)b̂1b̂2 + (ao + am1 − â1)b̂2

2

α
.

(23)

0 = b̂2(aoam1 − â2 − am1â1 + am2 − â1ao) + b̂1(am1â2 − â1â

α

1 = b̂2(â1â2 − am1â2 + aoam2 − â2ao) + b̂1(am2â2 − â2
2 − ao

α

= b̂2
2 − â1b̂1b̂2 + â2b̂

2
1. (26)

= bm1 + bm2

b̂1 + b̂2
. (27)

In the following experiments, am1 = 0, am2 = 0.01, and
o = −0.1, which correspond to the desired closed-loop poles
ssigned at −0.1 and ±0.1j within the unit circle of z-plane.

he above algorithm for MRAC can be extended to the case
f two inputs, air and hydrogen flow rates, and one output, cell
oltage, as shown in Fig. 6. The parameter κ is defined as the
ominal ratio between the average voltages of solenoid valve

s
c
a
m

aoam2 − aoâ2)
. (24)

ˆ1 − aoâ2am1)
. (25)

Fig. 6. Multivariable adaptive control block diagram.

nd air pump, which accounts for the nominal ratio between the
ow rates of hydrogen and oxygen. The determination of control
unctions R, T, and S still applies through (23)–(27) by simply
eplacing B̂(q) by B̂1(q) + κB̂2(q).

. Result and discussion

From the perspective of the certainty equivalence principle in
he system identification and adaptive control theories, a linear

odel of reduced order with time-varying parameters is usually
sed to generate the control law as if it were a true system no
atter whether it is linear or nonlinear [26]. Five adaptive con-

rol scenarios are investigated: the regulation of cell voltage by
he flow rate of air or hydrogen, the regulation of cell current
y the flow rate of air or hydrogen, and the regulation of cell
oltage by the flow rates of air and hydrogen. These scenar-
os provide a systematic way of demonstrating the effectiveness
f the proposed controller for various situations of a change in
he external load with which the change of internal impedance
nd the corresponding states accompany. The first four scenarios
re SISO cases, while the last one pertains to the multivariable
onfiguration.

The experimental setup of the fuel cell stack and its periph-
ral devices is shown in Fig. 7. On-line parameter estimation
nd model reference adaptive control law are performed on a
aptop computer using Matlab. The fuel cell power is dissi-
ated on an electronic load meter by which either cell current or

ell voltage remains constant while the other is regulated. Their
ependence, however, is characterized by polarization curves as
unctions of pressure, humidity, and temperature. The air-flow
ate is controlled by an air pump, whose property is specified
y experiments with the relationship of flow rate and driving
oltage, as shown in Fig. 8. The hydrogen flow rate is kept con-

tant at 1.2 LPM at 7 psig in the SISO cases, but is adaptively
ontrolled by the solenoid valve at on–off sequences. Both the
ir and hydrogen are not humidified, and the cell temperature is
onitored and sequentially controlled around 35–40 ◦C.
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Fig. 7. (a) Fuel cell control block diagram and (b) experimental setup.

Fig. 8. Air-flow rate vs. air pump voltage.
Fig. 9. Cell voltage control with fixed system parameters.
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Fig. 10. (a) Adaptive control of cell current (2 A) by the air pump voltage (upper
curve) under the cell voltage set at 8 V, and (b) the corresponding parameter
estimation.

Fig. 11. (a) Adaptive control of cell current (solid curve) at 3 A for the cell
voltage (dashed line) of 9 V, 8.5 V, and 8 V, (b) the input air pump voltage, and
(c) the corresponding parameter estimation.
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It is noteworthy that the fuel cell has a built-in water and
hermal management subsystem; thus, all the following experi-

ents focus on the justification and effectiveness of the proposed
daptive control strategy. In addition, the fuel cell used in this
esearch was not in its best condition due to the damage and
ging of membranes, so that the fuel stack could only oper-
te in a relatively conservative range of voltage, current, and
ower.

.1. Control of cell voltage with fixed parameters

Before the adaptive control performance is investigated, it
s interesting to observe the performance of cell voltage that
s adjusted by air pump voltage according to the control law

ith fixed control parameters in (23)–(27). These parameters are
etermined by a fixed set of system parameters a1 = −1.1059,
1 = 8.7898, a2 = 0.3567, and b2 = 0.2405, while the hydrogen is
upplied at a constant flow rate of 1.2 LPM at 7 psig. As shown in

ig. 12. (a) Adaptive control of cell voltage (solid curve) at 8.5 V under the
oad demand (dashed line) of 4 A, 3 A, and 2 A, (b) the corresponding air pump
oltage, and (c) parameter estimation.
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ig. 9, the cell voltage does not approach the desired command
f 9 V subject to the variation of the current load from 4 A and
A to 2 A for 200 s each. It is concluded that the conventional
ontrol strategy derived from fixed system parameters seems to
ack robustness to external disturbances as well as to the variation
f system parameters, and the large variation in cell voltage will
ause the DC/DC converter to regulate the output voltage with
ower efficiency.

.2. Regulation of cell current by air-flow rate

First, adaptive control of the fuel cell current by the air
ump voltage corresponding to the air pump flow rate is demon-
trated. When the output voltage is fixed by the load meter and
he hydrogen flow is kept steady by the solenoid valve, the
ell current is adaptively adjusted by the air pump voltage on
he demand for power consumption subject to the plant vari-
tion. This SISO process is simply described by the transfer
unction Ga1 which is transformed into a discrete-time model
nd is easily expressed as an ARMA model with time-varying
arameters.

For a 2 A current demand, the load voltage is set at 8 V, and
he hydrogen is supplied continuously with 1.2 LPM at 7 psig.
otice that hydrogen is oversupplied under this situation. The
ime responses of the air pump voltage input and cell current out-
ut are shown in Fig. 10(a), while the corresponding variation
f parameters estimated on-line is depicted in Fig. 10(b). It is
ound that the system parameters did not vary much, and the cell

t
a
c
t

ig. 13. (a) Adaptive control of cell current by (b) the voltage signal to the solenoid v
re estimated.
Sources 179 (2008) 618–630

urrent was easily regulated within 2 ± 0.02 A rms by adjusting
he air-flow rate. When the cell voltage shifts from 9 V through
.5 V to 8 V, at 200 and 400 s, the current is regulated at 3 A, as
hown in Fig. 11(a), by adaptively adjusting the air pump volt-
ge to change the air-flow rate in Fig. 11(b). The corresponding
arameter estimation is displayed in Fig. 11(c). Various settings
f cell voltage mean different operating points, which result in
ifferent parameters in the second-order transfer function. At
he junctions of voltage change, the cell current experienced
brupt increase, but was immediately adapted to its desired
alue within ±0.02 A rms. This experiment shows that the pro-
osed adaptive control is robust to the plant variation and power
emand.

.3. Regulation of cell voltage by air-flow rate

In many applications, the power source has to be kept at a
onstant voltage, while the current is drawn based on the demand
f the load. This happens quite often for fuel cells used on electric
ehicles. If hydrogen is constantly oversupplied with 1.2 LPM at
psig, and the cell current is drawn from 4 A through 3 A to 2 A,

he voltage will be well regulated at 8.5 V by the air-flow rate,
s shown in Fig. 12(a). The corresponding time history of air
ump voltage is presented in Fig. 12(b). It is not surprising that

he system parameters in Fig. 12(c) vary but are soon identified
t different operating points, while the control law is adaptively
hanged to keep the cell voltage within a variation of ±0.1 V of
he desired value.

alve with (c) its corresponding hydrogen flow rate, while (d) system parameters
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.4. Regulation of cell current by hydrogen flow rate

It is also interesting to investigate how well the cell current
s controlled by the hydrogen flow. When the air pump voltage
s set at 5 V with about 6.6–6.8 LPM air-flow, the cell voltage
s fixed at 8.5 V, and the desired current is 4 A, the output cur-
ent approaches 4.08 A with a minor error of 2%, as shown in
ig. 13(a). Although the cell current presents minor oscillation of
0.08 A, the hydrogen flow rate is measured about 0.123 LPM,
hich is only about 10% consumption compared to the exces-

ive usage of hydrogen at 1.2 LPM. During the adaptive control
rocess, a PWM circuit is designed to control the solenoid valve
t 100 Hz. The voltage signal controlling the on–off actuation of
olenoid valve is shown in Fig. 13(b), and is used to calculate
he average hydrogen flow rate over each second, as shown in
ig. 13(c). The corresponding on-line parameter estimates are
isplayed in Fig. 13(d) for the linearly approximated system
odel.
With the same setting of air pump voltage, the cell voltage is

xed at 8.5 V for the first 200 s, 9 V for the next 200 s, and 9.5 V
or the last 200 s, while the desired cell current is specified at
A, 4 A and 3 A. As shown in Fig. 14(a), the cell current is con-

rolled successfully by adjusting the flow rate of hydrogen with a
olenoid valve as depicted in Fig. 14(b), and the corresponding
arameter estimation is illustrated in Fig. 14(c). As expected,
7.3% of hydrogen is saved during the first 200 s, 84% during
he next 200 s, and 85% for the last 200 s, compared with the
onstant hydrogen flow of 1.2 LPM. It is also interesting to find
hat the steady-state error of current response is within ±0.35%
ith minor oscillations.

.5. Regulation of cell voltage by hydrogen flow rate

In this experiment, the air pump voltage is fixed at 5 V to
hich the corresponding flow rate is around 6.6–6.8 LPM, while

he hydrogen pressure is kept at 7 psig. The operating state of
he solenoid valve is either fully on at 12 V or fully off at 0 V.
he flow rate of hydrogen can be controlled by adjusting the
uty cycle, or the open period of the valve, which is determined
daptively by the control law and a carrier signal to chop into
pulse width modulation (PWM) signal. Fig. 15(a) shows the

ontrolled cell voltages from 9.5 V through 9 V to 8.5 V on the
emand of a 3 A load, controlled by the hydrogen flow rate in
ig. 15(b), and the corresponding time-varying parameters are
stimated in Fig. 15(c).

It is found that, at different power demands, the cell voltage
ontrolled by the hydrogen flow presents larger steady-state error
nd larger amplitude of oscillation that are controlled by the
ir-flow. In the first 200 s, the average voltage is 9.54 V with
.43% error, and the oscillatory amplitude is within ±0.125 V;
or the next 200 s, the average voltage is 9.18 V with 2% error and
0.225 V oscillation; while the average voltage is 8.78 V with

.26% error and ±0.375 V oscillation for the last 200 s. Higher

scillation of cell voltage occurs at a lower power output because
f the pulsation and overcharge of hydrogen flow due to the
n–off action of the solenoid valve. This can be improved by the
se of a proportional solenoid valve whose opening can be finely

i
i
o

ig. 14. (a) Adaptive control of cell current by (b) hydrogen flow rate while (c)
ystem parameters are estimated.

djusted. However, the amount of hydrogen consumed is much
ess than the continuous feeding of 1.2 LPM. From Fig. 15(b),
he average flow rate of hydrogen is 0.17 LPM during the first
00 s, and 86.2% hydrogen is saved; the average flow rate of
ydrogen is 0.16 LPM during the next 200 s with a saving of
6.9%; while 88.6% hydrogen is saved with the flow rate at
.14 LPM during the last 200 s.
In the case when the cell voltage is controlled at 9 V on var-
ous demands of load from 4 A through 3 A to 2 A, as shown
n Fig. 16(a), the response of the cell voltage also shows an
scillatory behavior, especially at lower power due to the reason
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ig. 15. (a) Adaptive control of cell voltage from 9.5 V through 9 V to 8.5 V
t 3 A load, (b) the required flow rate of hydrogen, and (c) the corresponding
arameter estimation.

entioned in the previous case. The average voltage is 9.08 V
ith 0.92% error for the first 200 s, and the average voltage

s 9.11 V with 1.26% error for the next 200 s, while the aver-
ge voltage is 9.34 V with 3.74% error for the last 200 s. The
orresponding input of the hydrogen flow rate and the parame-
er variation are shown, respectively, in Fig. 16(b) and (c). The
ydrogen consumption is saved for 84.8% for 4 A load, 90.3%
or 3 A load, and 92.9% for 2 A load, in comparison with the
onstant flow rate of 1.2 LPM.

.6. Regulation of cell voltage both by air and hydrogen
ow rates

In the previous cases, the flow rate of either air or hydro-

en is able to control the cell voltage and current adaptively
ased on the SISO model. Would the air pump and solenoid
alve work together to regulate the cell voltage due to the
emand of the load current? Theoretically, the stoichiometry

9
3
c
s

ig. 16. Adaptive control of cell voltage at load from 4 A through 3 A to 2 A,
b) the required flow rate of hydrogen, and (c) the corresponding parameter
stimation.

f hydrogen and oxygen in the chemical reaction of PEM fuel
ell is 2:1. If the cathode side is supplied with air, the stoichio-
etric ratio between hydrogen and air becomes approximately

:5. In practice, an excessive amount of oxygen is requested
or the fuel cell to operate stably [15]. From the above exper-
ments, the parameter κ that denotes the ratio between the
verage voltages of the solenoid valve and air pump was found
t a nominal number of 0.04 as the fuel cell operates in a
teady-state. This nominal number will be applied for the mul-
ivariable adaptive control described in Fig. 6 in the following
xperiments.

The pressure of hydrogen from the storage still maintains at
psig before entering the fuel cell through the solenoid valve.
oth the air pump and solenoid valve supply oxygen and hydro-
en with a proportional ratio of κ to regulate the cell voltage at

.5 V while the load current demand varies from 4 A through
A to 2 A at 200 and 400 s, as shown in Fig. 17(a). The adaptive
ontrol law of voltages of the air pump and solenoid valve is
hown in Fig. 17(b); the corresponding hydrogen flow rate is
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robust performance to the parameter variation at different power
demands.

Table 3
Qualitative analysis of cell outputs

Input flow Stoichiometry of H2/O2 Cell output Oscillatory

Air >2 Current Minor
ig. 17. (a) Adaptive control of cell voltage (solid curve) under the current
ommand (dashed line), (b) the control voltage of air pump and solenoid valve,
nd (c) the corresponding parameters.

isplayed in Fig. 17(c), and the estimation curves of the system
arameters are illustrated in Fig. 17(d).

Compared to the continuous hydrogen supply at 1.2 LPM,
he average flow rate of 0.13 LPM during the first 200 s for
he 4 A load accounts for a reduction of 89.9% hydrogen con-
umption. During the next 200 s for the 3 A load, the hydrogen
onsumption is reduced to 90.6% at the average flow rate of
.114 LPM, and during the last 200 s for the 2 A load, 94%
ydrogen is saved at the average flow rate of 0.087 LPM. At

he transition of load variation, the cell voltage experiences an
pparent oscillation, but settles quickly within a few seconds
ue to the robustness of adaptive control. Due to the regulation
f cell voltage by the hydrogen flow rate, even though much

A
H
H
A

ig. 18. Cell voltage under (a) an excessive supply (1.2 LPM) and (b) economic
upply (0.12 LPM) of hydrogen.

ydrogen is saved, the amplitude of the sustained oscillation of
ell voltage is much greater than that under an excessive supply
f hydrogen. Fig. 18(a) shows the well-controlled cell voltage
y an excessive supply of hydrogen of 1.2 LPM at the 3 A load,
ut Fig. 18(b) shows a heavier oscillation of cell voltage as the
ydrogen is adjusted economically at 0.12 LPM by the rapid
arameter adjustment of the adaptive controller.

In summary, from the above experiments, when the stoichio-
etric ratio of hydrogen and oxygen is larger than 2, i.e., the

ydrogen is oversupplied, both the cell voltage and current can
e controlled by the air-flow rate with only minor oscillations.
hen the oxygen or air is oversupplied and in contrast the hydro-

en is supplied in an economic mode by the adaptive control law,
oth the cell current and voltage regulated by the hydrogen flow
ate present larger oscillations. Table 3 summarizes the qualita-
ive description of the resulting oscillation of cell outputs to the
nder- or over-supply of hydrogen. However, such oscillations
an be suppressed by a proper choice of DC/DC converter. In
hort, the proposed model reference adaptive strategy results in a
ir >2 Voltage Minor
ydrogen <2 Current Medium
ydrogen <2 Voltage Large
ir + hydrogen <2 Voltage Large
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. Conclusion

Indirect model reference adaptive control has been success-
ully applied to a low-power PEM fuel cell. For use in control
ystems, the highly nonlinear, time-varying, distributed param-
ter fuel cell stack of complex electrochemical reactions and
hysics is approximated by a simple two-input two-output model
hat is described within subsystem blocks. These blocks describe
he dynamic relationship between cell voltage and current out-
uts and the hydrogen and air-flow rate inputs. By including the
ynamics of the air pump and solenoid valve, the correspond-
ng transfer functions are identified off-line at certain operating
oints via a non-parametric frequency domain method. The
odel is subsequently reduced to an auto-regressive moving-

verage model for on-line parameter estimation in an adaptive
ontrol loop. Experimental results show that the adaptive control
s effective in regulating cell current and voltage by adjusting
ir and hydrogen flow rates in response to fuel cell and exter-
al power demand perturbations. On–off control of the hydrogen
alve is shown to reduce fuel consumption, which increases sys-
em efficiency. It is noteworthy that the successful regulation of
ell voltage by manipulation of the air pump and hydrogen valve
ay relieve DC/DC converters of demanding requirements for

egulating fluctuating cell voltage. Nevertheless, the model ref-
rence adaptive control is applied under restricted conditions of
peration in this research; it is necessary to make more effort
oward its robustness and generality to a class of fuel cell sys-
ems. In addition, it is an important issue to include the water and
hermal management in future research to monitor and control
he humidity and temperature of reactants and the membrane
o that the fuel cell can operate in a safe, efficient, and robust
ay with the proposed control strategy. It is expected that the
roposed adaptive control can be easily extended to more com-
lex multivariable control problems when more system states
re to be regulated, and could be applied to stationary and trans-
ortation systems, as well as low- and high-power fuel cell
pplications.
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